

Преимущества использования международных стандартов протоколов при разработке продуктов сетевой безопасности

- Разработка нового протокола «с нуля» сложная и трудоемкая задача
- Принятие международных стандартов сопровождается их скурпулезным анализом
- Международные стандарты охватывают широкий спектр возможных сценариев
- Опора на международные стандарты позволяет добиться совместимости с продуктами других производителей
- Снижается стоимость и время разработки, т.к. разработка нового протокола защиты информации – крайне сложная и затратная задача

Всегда ли международные стандарты протоколов полностью удовлетворяют наши потребности?

- Международные стандарты пишутся без оглядки на требования российских сертифицирующих органов
- Стандартные протоколы не всегда предусматривают необходимой для Росии параметризации
- Иногда местные особенности эксплуатации выявляют слабые стороны стандартных решений

Работа по адаптации международных стандартов в ТК26

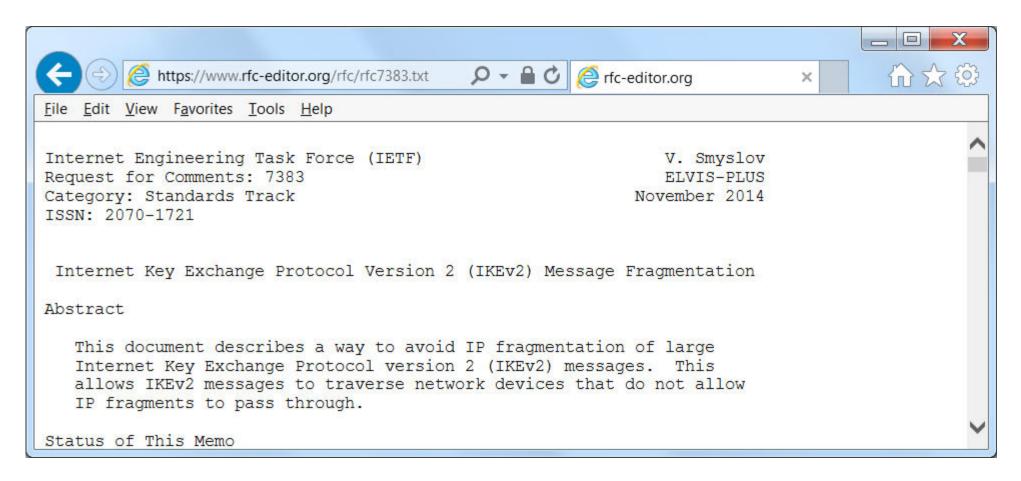
- TK26 Технический Комитет по стандартизации «Криптографическая защита информации»
- Одно из направлений деятельности ТК26 гармонизация международных стандартов и российских криптоалгоритмов
- ЭЛВИС-ПЛЮС участвует в работе ТК26 с 2006 года
- Специалисты ЭЛВИС-ПЛЮС принимали участие в обсуждении технических спецификаций по использованию российских криптоалгоритмов ГОСТ в протоколе IKEv1
- В настоящее время ЭЛВИС-ПЛЮС в качестве головной организации участвует в разработке стандартов по использованию российских криптоалгоритмов ГОСТ в протоколах ESP и IKEv2

Простая адаптация международных стандартов — это улица с односторонним движение, мы стремимся сделать ее двухсторонней путем активного участия в их разработке

- Стандартизация в международных организациях специфичных для России сущностей (например криптоалгоритмов)
- Учет российской специфики при разработке стандартов
- Вовлеченность в разработку базовых (неспецифичных для России) международных стандартов

IETF – международная организация, занимающаяся стандартизацией протоколов работы в IP-сетях

- Образована в 1986
- Основная задача разработка технических стандартов определяющих работу сети Интернет
- Формальное членство отсутствует; основная работа ведется через почтовые списки рассылки; любой подписавшийся автоматически становится членом IETF
- Конференции три раза в год в различных частях мира (более 1000 участников)
- Принципы открытость, вовлеченность, компромисс и работающий код
 - «Be conservative in what you send and liberal in what you accept» (Jon Postel)


Участие российских специалистов в работе IETF

- За все время существования IETF в его работе участвовало
 38 авторов из России (КриптоПро, КриптоКом, Яндекс, Qrator Labs,
 ЭЛВИС-ПЛЮС и другие)
- ЭЛВИС-ПЛЮС участвует в работе IETF с **1998** года
- Все вместе российские авторы опубликовали **22** RFC, из них **6**, имеющих статус стандарта, из них **4** за авторством ЭЛВИС-ПЛЮС
- В настоящий момент у всех активных авторов из России в совокупности в IETF находятся в работе **18** документов, из них **8** у ЭЛВИС-ПЛЮС
- Сейчас ЭЛВИС-ПЛЮС один из самых активных членов рабочей группы ірѕесте (занимающейся развитием протоколов IРѕес)

- Проблема «NAT и IKEv2»
 - Протокол IKEv2 является ключевой частью IPsec, обеспечивая аутентифицированный обмен ключами
 - IKEv2 использует UDP в качестве транспортного протокола, при этом IKEv2 в процессе работы может посылать достаточно большие сообщения, которые разбиваются на несколько фрагментов на уровне IP протокола
 - Некоторые Трансляторы Сетевых Адресов (NAT, Network Address Translator)
 не пропускают фрагментированные IP пакеты
 - Неполнофункциональные SOHO (Small Office/Home Office) маршрутизаторы
 - B CGN (Carrier Grade NAT) обработка фрагментов может быть отключена
 - Результат пользователь не может установить защищенное соединение из кафе/гостиницы или если его провайдер использует NAT с отключенной обработкой IP фрагментов
- Проблема стала заметной в мире начиная с 2010 г.

- Рабочая группа ірѕесте в ІЕТГ занялась поиском решения летом 2012
- Было предложено несколько вариантов решения проблемы:
 - о использование короткоживущих TCP соединений (CheckPoint)
 - о фрагментация пакетов на уровне IKE без криптографической защиты фрагментов (Microsoft, Cisco)
 - о фрагментация пакетов на уровне IKE с криптографической защитой каждого фрагмента (ЭЛВИС-ПЛЮС)
- Летом 2013 вариант предложенный ЭЛВИС-ПЛЮС после длительного обсуждения был окончательно принят как основной
- В течении 2013-2014 проект стандарта дорабатывался с учетом замечаний рабочей группы

В ноябре 2014 вышел RFC 7383 «Internet Key Exchange Protocol Version 2 (IKEv2) Message Fragmentation», имеющий статус стандарта

• В настоящее время RFC 7383 реализован у всех ведущих мировых производителей, имеющих отношение к IPsec:

0	ЭЛВИС-ПЛЮС	VPN/FW 3ACTABA	2013 (до выхода RFC!)
0	StrongSwan	v5.2.1	2015
0	Apple	iOS 9, OS X El Capitan	2015
0	Cisco Systems	IOS 15.5(2)T, ASA 9.6(1)	2015
0	INSIDE Secure	QuickSec IPsec Toolkit	2015
0	Microsoft	Windows 10 (v1803), Windows Server 2019	2018

• RFC 7383 стал одним из «базовых» расширений IKEv2: новые расширения разрабатываются в предположении, что его поддержка есть «везде», то есть в любой современной реализации IPsec

Участие ЭЛВИС-ПЛЮС в работе IETF: разработка международного стандарта по защите IKEv2 от распределенных атак отказа в обслуживании

- IKEv2 имеет встроенный механизм защиты от DoS атак исчерпания памяти на шлюзе путем отсылки запросов с «фейковых» IP адресов, основанный на механизме COOKIE
- Механизм COOKIE в паре с фильтрацией IP успешно работают при защите от одиночных DoS атак, но неэффективен в случае распределенных атак отказа в обслуживании (Distributed Denial of Service DDoS)
- DDoS атака производится с использованием ботнетов сетей зараженных компьютеров, контролируемых злоумышленником

Участие ЭЛВИС-ПЛЮС в работе IETF: разработка международного стандарта по защите IKEv2 от распределенных атак отказа в обслуживании

- Для защиты IKEv2 от DDoS атак рабочей группой ipsecme в IETF в 2014 г. был предложен новый механизм – PUZZLE, основанный на принципе Proof-of-Work (используемом также в BLOCKCHAIN)
- При опасности исчерпания ресурсов шлюз всем новым клиентам начинает выдавать «загадки» (PUZZLE), которые требуют существенной затраты вычислительных ресурсов на решение, что снижает интенсивность атаки
- В октябре 2014 г. первый рабочий документ IETF по PUZZLE в IKEv2
 - о первоначальное авторство было у CheckPoint
 - о в марте 2015 г. ЭЛВИС-ПЛЮС стал соавтором документа
- В ноябре 2016 г. вышел окончательный стандарт RFC 8019 «Protecting Internet Key Exchange Protocol Version 2 (IKEv2) Implementations from Distributed Denial-of-Service Attacks»
- В 2016 г. этот механизм был реализован в VPN/FW ЗАСТАВА

Участие ЭЛВИС-ПЛЮС в работе IETF сегодня: защита от атак с использованием квантовых компьютеров

- В IETF готовится к публикации в качестве стандарта документ по защите IPsec соединений от возможных атак с использованием квантовых компьютеров
 - предполагаемый срок публикации весна-лето 2019
 - ЭЛВИС-ПЛЮС является соавтором (вместе с Cisco Systems)
 - о реализован в VPN/FW 3ACTABA
- В работе в IETF находится пакет документов по адаптации IKEv2 к использованию примитивов постквантовой криптографии
 - предполагаемый срок публикации после 2020
 - о авторы Post-Quantum, Cisco Systems, ISARA Corporation, Philips, ЭЛВИС-ПЛЮС

Стандарты IPsec в VPN/FW ЗАСТАВА

Стандарт	Год принятия	В ЗАСТАВЕ
RFC 2409 The Internet Key Exchange	1998 (по 2005!)	2000-2018
RFC 7296 The Internet Key Exchange Version 2 (IKEv2)	2005-2014	c 2012
RFC 7383 IKEv2 Message Fragmentation	2014	c 2013
RFC 6290 A Quick Crash Detection Method for IKEv2	2011	c 2014
RFC 6311 Protocol Support for High Availability of IKEv2/IPsec	2011	c 2014
RFC 5723 IKEv2 Session Resumption	2010	c 2015
RFC 5685 Redirect Mechanism for the IKEv2	2009	c 2016
RFC 8019 Protecting Internet IKEv2 from DDoS Attacks	2016	c 2016
RFC 4555 IKEv2 Mobility and Multihoming Protocol (MOBIKE)	2006	c 2017
RFC 8229 TCP Encapsulation of IKE and IPsec Packets	2017	c 2018
RFC XXXX Postquantum Preshared Keys for IKEv2	готовится	c 2018

БЛАГОДАРИМ ЗА ВНИМАНИЕ

Валерий Смыслов (svan@elvis.ru)