

ПАО "Газпром нефть» Центр цифровых технологий Сивой Никита Владимирович 13.02.19

Матрица применимости беспилотных летательных аппаратов

Мониторинг нефтяной инфраструктуры с использованием БЛА

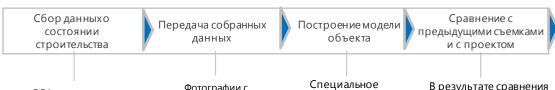
Использование БЛА позволяет в режиме реального времени следить за состоянием трубопроводов и обеспечить контроль их целостности

2018 год: более 60% трубопроводов мониторятся беспилотными летательными аппаратами

Реализованные НИОКР-проекты по внедрению беспилотных летальных аппаратов (БЛА) в 2018 году

Мониторинг строительства КАПИТАЛЬНЫХ ОБЪЕКТОВ

Многоуровневая МАГНИТОМЕТРИЧЕСКАЯ СЪЕМКА



ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ ДЛЯ ИНТЕРПРЕТАЦИИ ДАННЫХ БЕСПИЛОТНОГО МОНИТОРИНГА

НИОКР-проект «Мониторинг строительства с использованием беспилотного летательного аппарата»

Цель проекта - Оценка применимости технологии для автоматизации ручного труда, раннего выявления отклонений от проекта и нарушений требований к выполнению работ

БЛА производит регулярный облет объекта и осуществляет фотосъемку

Фотографии с геопривязкой положения камеры передаются на сервер предприятия или в облако

программное обеспечение строит 3D модель объекта на основе фотографий

В результате сравнения моделей программа вычисляет объем выполненных работ, находит расхождение с проектом, оценивает выполнение графика

Предварительные результаты

- 1. На территории актива протестирован прототип системы для мониторинга строительства
- 2. Подтверждена эффективность использования технологии для оперативного отслеживания текущего статуса строительных работ/контроля подрядчика
- 3. Выделены направления дальнейшего развития системы беспилотного мониторинга

НИОКР-проект « Искусственные нейронные сети для интерпретации данных беспилотного мониторинга»

Проблемы

- Обработка больших массивов данных
- Низкая оперативность анализа данных оператором
- Высокое влияние человеческого фактора на качество обработки

Ценностное предложение

- Автоматизированное дешифрирование материалов аэрофотосъемки
- Снижение стоимости работ и временных затрат Возможность
 - распознавать и классифицировать необходимые объекты строительства
- Система может определять любые объекты, которые может различить человек

(2) Решение

Применение искусственной нейронной сети для обработки фото и видео материалов, полученных в результате беспилотной съемки

Статус проекта

Инициация

Выбор исполнителя

Подготовка к испытаниям

Тестирование

Анализ результатов

Проект завершён

Цель проекта

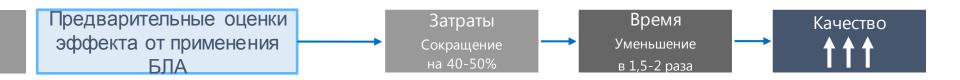
Апробация ИНС для целей обработки материалов беспилотного мониторинга строительства трубопроводов.

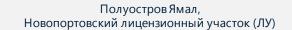

Достигнутые результаты

- 1. Разработан прототип на основе ИНС для автоматической идентификации и подсчёта объектов на активах Газпром нефти
- 2. Проведены испытания в условиях актива
- 3. Выделены направления дальнейшего развития и интеграции технологии

Газпромнефть-Оренбург

Сентябрь – Декабрь 2018

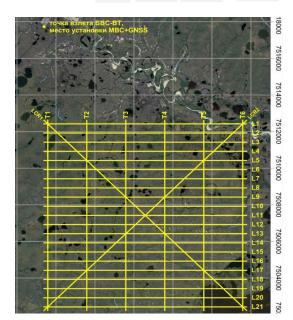

Актуальность развития технологий ГРР с применением БЛА


- Повсеместное использование СРР 2D или 3D на ранних стадиях ГРР снимает больше геологических неопределенностей, чем необходимо на данном этапе
- Использование ГРР уменьшить затраты и получить оптимальное количество информации на данном этапе вместо максимально возможного

Магнитометрическая съемка с применением беспилотного аппарата

Магнитометрия – это один из несейсмических методов решения геологических задач, основанный на Применение магнитометрической различии магнитных свойств горных пород съемки: Доли рынка геологоразведочных работ Поиск геологических неоднородностей в осадочном чехле* Среднемировое Россия Исследования поведения границ значение фундамента* ~ 95% Сейсмические методы ~ 99% Распространение информации, полученной при бурении скважины в одной точке, на Несейсмические методы ~ 5% ~ 1% территорию вокруг неё.

Полевые испытания на месторождении



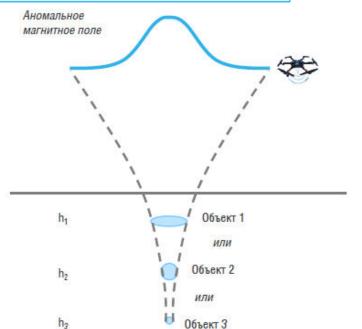
Объект исследования: магнитные свойства осадочного чехла и фундамента

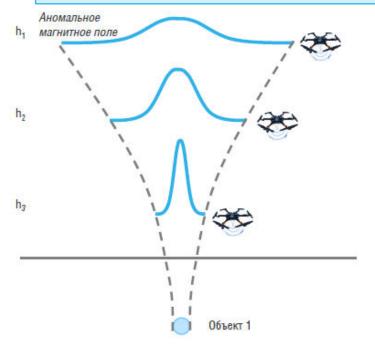
S участка Масштаб съемки Объем работ

•				•	
100 км ²	1:50 000		120	1200 пог.	
				KM	
Высоты, м	50	100	200	400	

Двигатель	ДВС		
Длительность полета	~2 ч		
Скорость полета	40-60 км/ч		
Сопротивление ветру	До 10-12 м/с		
Температурный режим	-30 °C + 40 °C		
Полезная нагрузка	5-10 кг		
Способ управления	Автоматический полет по заданию		
Тип взлета	Вертикальный		

Многоуровневая магнитометрическая съемка


Обычная магнитометрическая съемка


Неоднозначность решения обратной задачи – одно и то же аномальное магнитное поле создает разные геологические модели

Многоуровневая магнитометрическая съемка

Измерение полного вектора магнитного поля на нескольких уровнях повышает точность определения залежей полезных ископаемых

Резюме проекта «Многофункциональный Аэрокомплекс Геологоразведки» (МАГ)

Проект «МАГ» Поиск >> Оценка Выбор Определение Реализация 01.2018 05.2018 02.2019 12.2019 06.2020 12.2020

Описание проекта

■Создание многофункционального аэрокомплекса геологоразведочных работ, который в ближайшем будущем позволит применять различные несейсмические методы и, как следствие, раскрыть потенциал комплексного подхода к реализации геологоразведочных и инженерно-технических задач на основе единовременной фиксации спектра параметров различных физических полей

Цели проекта

- •Создание технологического решения для оперативного проведения геолого-разведочных работ (ГРР) с использованием технологий беспилотных летательных аппаратов.
- •Оптимизация временных и стоимостных затрат на проведение ГРР
- ■Роботизация полевых работ на ранних этапах ГРР

Проект направлен на решение технологического вызова «Технологии развития ресурсной базы и региональных исследований» долгосрочной программы «**Технологии геологоразведочных работ и развития** ресурсной базы (ТГРРиРРБ)»

Организация проекта

Руководитель проекта: Григорьев Г.С.

Эксперты: Бочков А.С., Карпов И.А.

Планируемые к реализации проекты

РАСПОЗНАВАНИЕ ОБЪЕКТОВ ПО

РЕЗУЛЬТАТАМ ВИДЕОСЪЕМКИ С

Анализ логистической

инфраструктуры ГПН на

БЛА для доставки МТР

ПРЕДМЕТ ВНЕДРЕНИЯ ГРУЗОВЫХ

БЛА

ФОРСАЙТ ПО ФОРМИРОВАНИЮ СТРАТЕГИИ ПРИМЕНЕНИЯ БЕСПИЛОТНЫХ ТЕХНОЛОГИЙ В ГАЗПРОМ НЕФТИ СБОР ГЕОИНФОРМАЦИОННЫХ ДАННЫХ О МЕСТНОСТИ С использованием БЛА для ПЛАНИРОВАНИЯ КАПИТАЛЬНОГО СТРОИТЕЛЬСТВА Разработка прототипа для МОНИТОРИНГА КАПИТАЛЬНОГО СТРОИТЕЛЬСТВА

Планирование сейсмических работ на основе съемки с БЛА

Поддержка пилотных внедрений беспилотных технологий в структурах ГПН

Анализ логистической инфраструктуры ГПН на предмет внедрения грузовых БВС для доставки МТР

Этап 1 Анализ рынка

Исследование рынка БВС с детальной проработкой сегмента грузовых дронов

- Классификация и сегменты БВС
- Динамика и тенденции рынка БВС в и в России мире
- Существующие грузовые БВС, кейсы их применения
- Барьеры и ограничения в ↓ применении БВС для грузоперевозок

Шорт-лист грузовых БВС, барьеры ограничения их применения

февраль-апрель 2018 г.

Этап 2 Анализ логистической инфраструктуры ГПН

- Отбор автономных объектов для анализа
- Сбор информации о маршрутах, перевозимых МТР и используемых вертолетах
- Оценка целесообразности внедрения грузовых БВС
- Выделение маршрутов с наибольшим потенциалом для применения БВС

- «Пороговые величины целесообразности» применения грузовых БВС
 - 2. Матрица с техническими характеристиками БВС, привязанная к условиям логистической инфраструктуры ГПН
 - 3. План апробации грузовых БВС в ГПН

Этап 3 Тестирование БВС на выбранных автономных объектах

- Покупка/создание на заказ БВС
- Подготовка к полетам
- Проведение апробаций

2. Масштабирование применения БВС

Сбор геоинформационных данных о местности с использованием БВС для проектирования капитального строительства

Восточный участок ОНГКМ (50 кв.км.)

+отдельные работы по детектированию техногенных тел в грунте

Цель проекта — оценка применимости технологии для оперативного принятия предпроектных решений при определении перспективных мест для обустройства буровых площадок (сравнение с традиционными инженерногеодезическими изысканиями на этапе проектирования).

Традиционные инженерно-геодезические изыскания

Полевые работы ~ 2 месяца; Камеральные работы ~ 2 недели; Отчёт 2 ~ недели; Стоимость ~ 27,5 млн руб.

Применение беспилотного летательного аппарата для инженерно-геодезических изысканий

- 1. БЛА производит облет объекта, осуществляя его фотосъемку под разными углами
- 2. Благодаря точной геопривязке снимков специальное ПО создает фотограмметрические продукты (цифровая модель местности, ортофотопланы, 3D-модели), точность ≤ 0.1 м
- 3. Продукты подгружаются в AutoCAD, где производится проектирование капитального строительства

Проведение форсайт-сессии по беспилотным технологиям в Газпром нефти

Цель форсайта – формирование стратегии применения беспилотных технологий в Газпром нефти

Формат мероприятия:

В ходе двухдневного форсайта *все участники распределяются на группы, где при поддержке модератора продумывают «Карту будущего» с возможными сценариями применения беспилотных технологий в высокой степени готовности для решения актуальных задач в Газпром нефти.

Участники:

Руководители направлений в Газпром нефти и ДО

Разработчики и производители беспилотных технологий

Экспертное сообщество в сфере беспилотной авиации

Ожидаемые результаты

- «Карта будущего» со сценариями применения БЛАдля Газпром нефти (см.
- 🧑 Приложение 1)
- «Карта будущего» со сценариями применения БЛАв разрезе отдельных
- функций Газпром нефти
- Матрица применимости БЛА в Газпром
- 4 нефти

Ценностное предложение

- 🚺 Формирование портфеля новыхпроектов на 2019 год
- Лидерство Газпром нефти в сфере внедрения БЛА
- Поиск новых Заказчиков и Исполнителей проектов
- Знакомство руководства компании с новой технологией.
- Формирование спроса на применение БПЛА

Контакты

У вас есть проработанные предложения по применению беспилотных технологий в нефтегазовой отрасли?

Мы поможем:

- с поиском Заказчика в структурах Газпром нефти
- апробацией технологии на наших площадках

Сивой Никита Владимирович тел: +7 (812) 448 24 01 доб. 41393

моб: +7(981)861-25-28

email: Sivoy.NV@gazprom-neft.ru