

Безопасность объектов промышленной инфраструктуры с использованием технологий высокоточного позиционирования ГЛОНАСС Опыт мониторинга мостов и эстакад

Шульгин Г.К. Заместитель руководителя департамента ООО «НИИ Прикладной Телематики»

Назначение Системы

Контроль целостности и гарантированного устойчивого функционирования потенциально опасных объектов промышленной инфраструктуры и повышения уровня безопасности их эксплуатации, включая:

- Повышение достоверности контроля технического состояния сооружений
 за счет автоматизации измерений деформаций и смещений характерных элементов конструкций
- Снижение возможного ущерба от опасных состояний и процессов за счет непрерывного отслеживания показателей его механического состояния и информирования в режиме реального времени ответственных лиц об опасных состояниях и процессах
- Минимизация избыточных издержек на контроль состояния сооружений по нормативным срокам за счет точного и оперативного выявления его любых существенных ухудшений в части смещений и деформаций

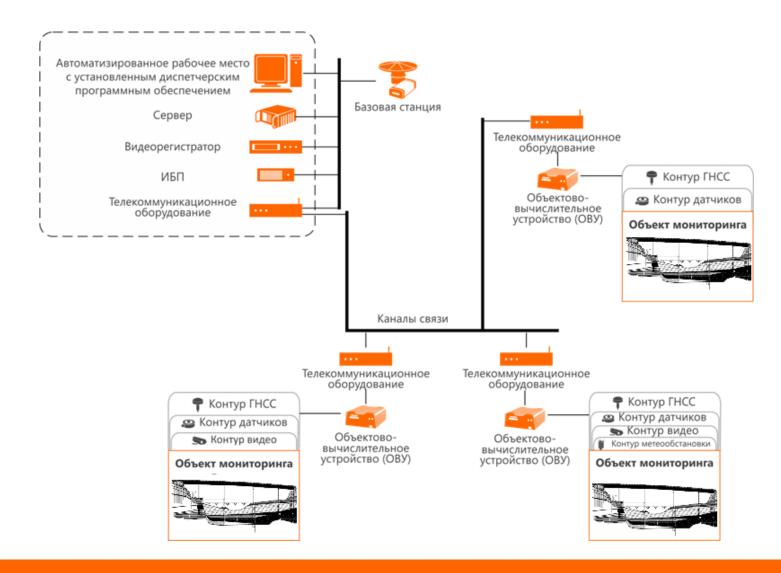
Методы и технологии

Мониторинг объектов 24 часа в сутки, 7 дней в неделю и 365 дней в году с заданной дискретностью

Высокая точность и однородность измерений, исключающую ошибки исполнителя измерений

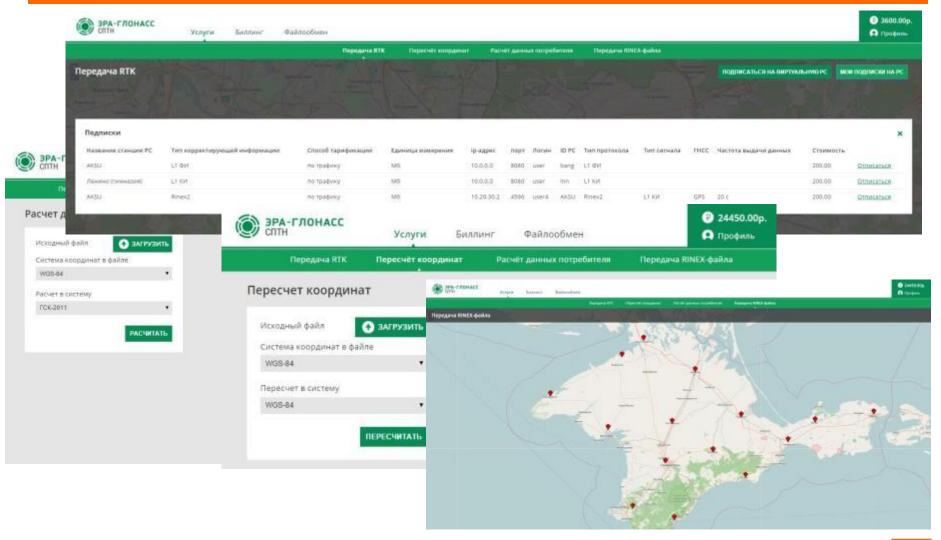
Сравнение данных с допустимыми (проектными) величинами в реальном времени

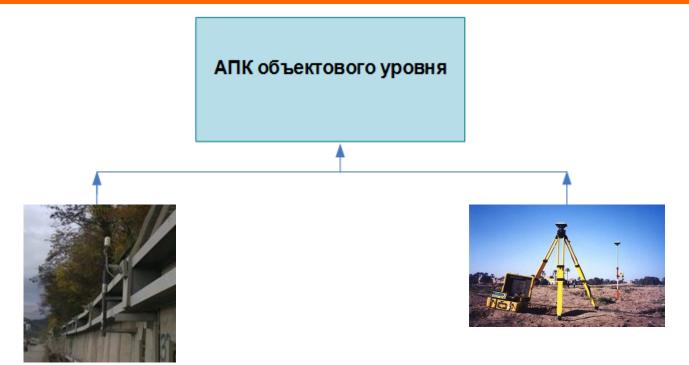
Удаленное управление



Автоматический сбор, анализ данных и передача информации мониторинга через имеющиеся сети и каналы связи

Система позволяет выявлять тенденции деформационных процессов на объекте, автоматически немедленно оповещать персонал о тревожной ситуации и обеспечивать его информацией для оперативного предотвращения нежелательных явлений


Общая структурная схема системы


Сеть референцных станций

Типы объектовых АПК

Стационарный комплекс

 Контроль ТЭС на этапе эксплуатации ОАТИ

Переносной комплекс

- Контроль на этапе проектирования и строительства ОАТИ
- Периодический контроль ОАТИ

Объекты автоматизации и контроля

- 1. Инженерный корпус хостинского тоннеля.
- 2. Хостинская эстакада.
- 3. Верхнее подпорное сооружение (а/д М27 Джубга-Сочи км 196 + 310).
- 4. Нижнее подпорное сооружение (а/д М27 Джубга-Сочи км 196 + 310).
- ✓ Все пилотные объекты функционируют как единый опытный участок фрагмент многообъектовой локальной сети
- ✓ За период ОЭ 3 месяца оборудование подтвердило свои точностные характеристики
- ✓ Получено тиражируемое решение для построения ведомственной АСУ мониторинга объектов

Схема размещение оборудования на оползневых склонах

Стационарный комплекс

ДДД Переносной комплекс

Размещение оборудования на оползнеопасных склонах

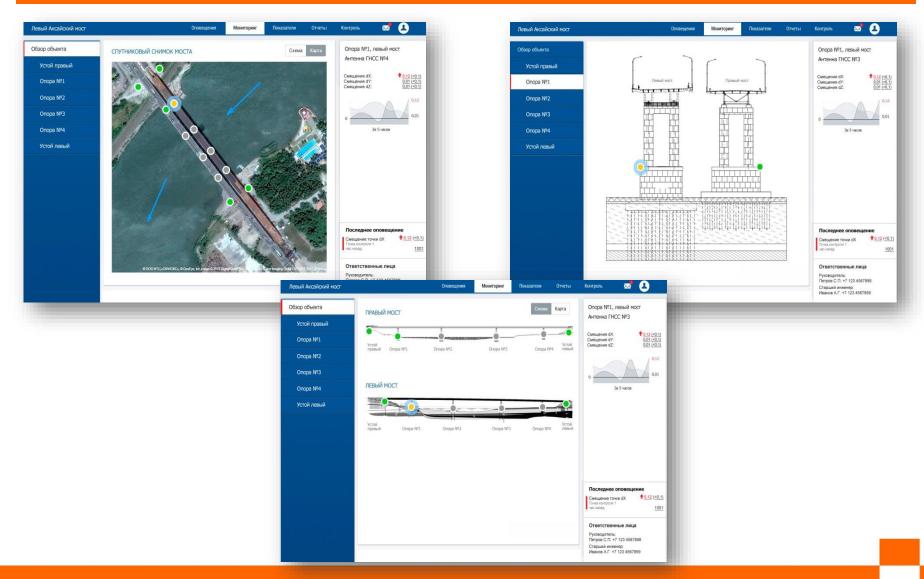
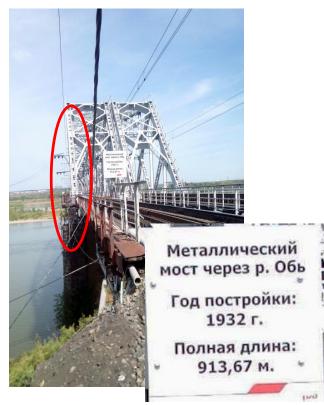
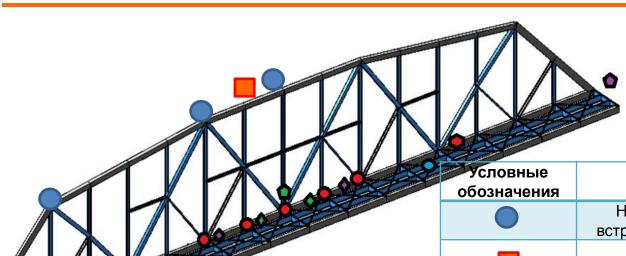


Схема размещения оборудования на Аксайском мосту



Объект мониторинга: Комсомольский мост



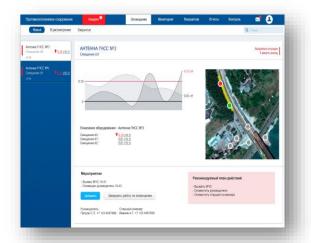
- Пролётное строение №2 ж/д моста «Комсомольский» в г. Новосибирске
- 2. Длина расчётного пролёта 126 м
- 3. Мост включён в перечень критически важных объектов федерального уровня значимости Распоряжением Правительства РФ № 411рс от 29.03.2006 г.
- Мост относится к I классу (повышенному) ответственности сооружения по Федеральному закону №384-ФЗ «Технический регламент о безопасности зданий и сооружений» от 30.12.2009 г.

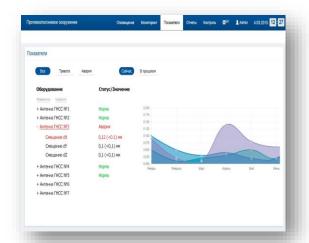
Схема размещения навигационного и измерительного оборудования на объекте мониторинга

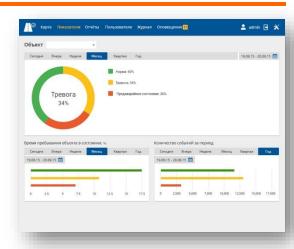
Комплекс оборудования обеспечивает мониторинг динамических нагрузок от проходящих ж/д составов, что недостижимо штатными средствами контроля (периодический обход с визуальным контролем)

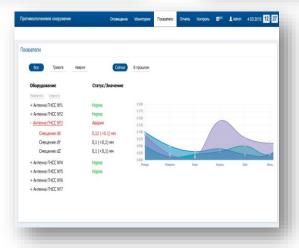
обозначения	Наименование	B0
	Навигационные модули со встроенными акселерометрами	3
	Метеостанция	1
•	Тензометры	5
•	Датчики температуры	2
♦	Оптоволоконные датчики температуры	2
٥	Датчики линейных смещений	1
•	датчики линеиных смещении	1
•	Датчики угла наклона	2
•	Трещиномеры	2

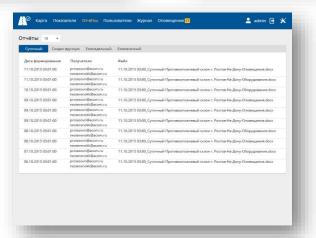
Коп-


Контролируемые параметры объекта мониторинга




Nº п/п	Оборудование	Контролируемый параметр	
1	Навигационные модули со встроенными акселерометрами	Смещения и вибрации (по 3-м осям) характерных узлов фермы, в том числе друг относительно друга	
2	Метеостанция	Направление и скорость ветра, температура воздуха, влажность	
3	Тензометры	Деформации и напряжения несущей балки (Свод правил СП 35.13330.2011 «Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84»)	
4	Датчики температуры	Температура элементов конструкции для учета	
5	Оптоволоконные датчики температуры	линейных расширений и коррекции показаний других датчиков	
6	Датчики линейных смещений	Частота вертикальных колебаний (Свод правил СП 79.13330.2012 «Мосты и трубы. Правила обследований и испытаний. Актуализированная редакция СНиП 3.06.07-86»)	
7		Наличие движения по мосту (есть ли внешняя нагрузка)	
8	Датчики угла наклона	Величина центрального прогиба несущей (Свод правил СП 35.13330.2011 «Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84»)	
9	Трещиномеры	Величина зазора стыков	


Программное обеспечение



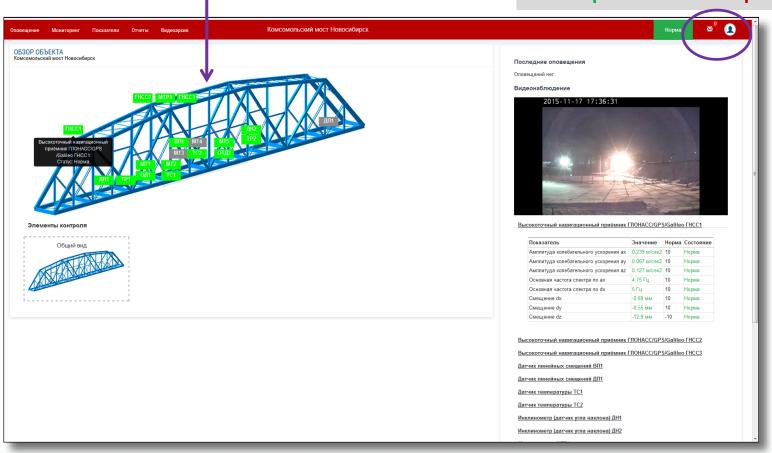
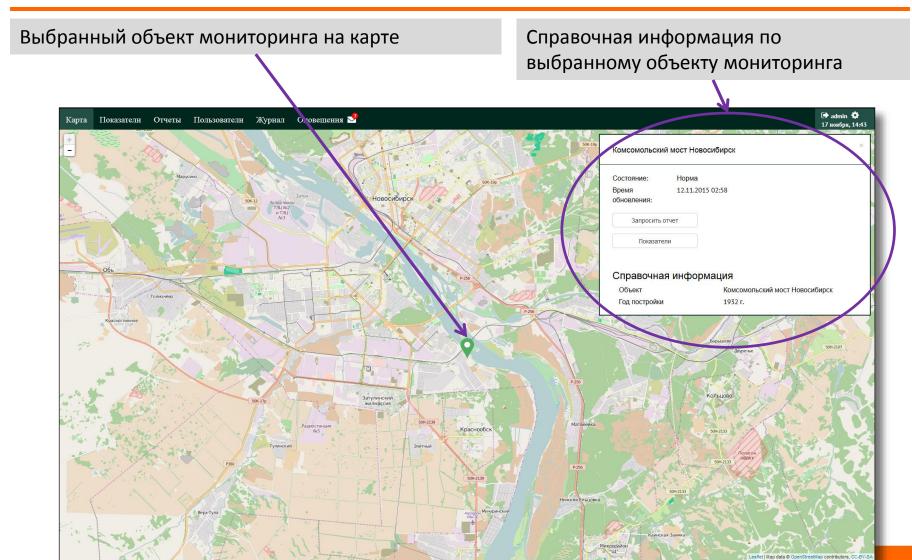

Программное обеспечение APM эксплуатационного уровня

Схема объекта мониторинга с установленными навигационными и измерительными датчиками


Индикатор оценки технического состояния объекта мониторинга:

Норма Внимание Тревога

Программное обеспечение APM оператора Системы

Ожидаемый эффект от внедрения Системы

- Повышение уровня безопасности на промышленных объектах за счет своевременного выявления критичных уровней технического состояния объектов контроля и адекватности прогнозирования развития опасных процессов
- Повышение уровня обоснованности принятия решений об очередности ремонта и замены элементов конструкций объектов
- Рациональное расходование финансовых средств на проведение обследований и испытаний объектов и на привлечение сторонних организаций для этих целей
- Повышение надежности контроля за счет автоматического высокоточного непрерывного измерения технического состояния объекта
- Накопление и формирование статистических данных об уровне технического состояния критически важных объектов

Использование результатов

Результаты работы предполагается использовать на критически важных объектах, в федеральных АС контроля и управления на объектах транспорта и системах, обеспечивающих транспортную безопасность, в интересах государственных и частных заказчиков.

Непрерывный мониторинг технического состояния крупных инженерных сооружений в реальном времени, обеспечиваемый Системой, позволяет предупредить и своевременно выявить начинающиеся нежелательные деформационные и разрушающие процессы в конструкциях, что может сэкономить федеральные, региональные, ведомственные или корпоративные финансовые

средства

СПАСИБО ЗА ВНИМАНИЕ