«Задача обеспечения комплексной безопасности и защищенности газовых промыслов от техногенных катастроф. Адаптация к специфике и проблематике АО «Ачимгаз»

- А.Б. Кульчицкий, заместитель главного инженера по автоматизации.
- С.В. Жулев, заместитель начальника отдела КИПиА и АСУТП.

Москва, 9 февраля 2017 года

Газоконденсатный промысел – сложная техническая система (СТС), главными особенностями которой являются целостность, функциональность и организованность.

В контексте настоящего доклада эти особенности имеют свою специфику:

- 1. Целостность СТС достигается посредством введения определяющих структуру СТС взаимосвязей и взаимодействий элементов системы, проявляющихся в возникновении новых свойств СТС, которыми не обладают ее элементы. Именно нарушение целостности СТС, а не нарушения в ее элементах, приводят к развитию в СТС системных аварий.
- 2. Функциональность определяется четко оговариваемыми целевыми задачами, которые должна решать СТС. Одной из таких приоритетных задач является обеспечение комплексной безопасности и защищенности самой СТС от системных аварий.
- 3. Организованность СТС предопределяет наличие встроенной в нее структуры и программно-технических средств, реализующих процедуры управления и обеспечения комплексной безопасности и защищенности в автоматическом режиме.

Определение уровней безопасности газоконденсатного промысла (ГКП)

Одним из возможных способов декомпозиции ГКП является представление его структуры в виде иерархического, взаимосвязанного 3-уровневого образования, состоящего из промыслового, цехового и агрегатного уровней. Каждый уровень ГКП состоит из жестко заданной конфигурации основного технологического оборудования (элементов уровня), объединенного в различные структурные образования, и связей, посредством которых осуществляется их непосредственное взаимодействие.

Промысловый и цеховой уровни ГКП являются самостоятельными сложными системами, каждая из которых обладает своим набором, образующих ее элементов, и связями между элементами.

ГКП общепромыслового уровня — это набор его элементов-цехов, объединенных внутриплощадочными трубопроводами, связанных единым технологическим процессом и взаимодействующих между собой в формах обмена энергией и веществом и, возможно, информацией (например, при наличии общих режимных параметров и реализации координированного управления ГКП), рис.1.

ГКП цехового уровня — это набор технологических блоков (блок сепаратора входного, блок сепаратора промежуточного, блок сепаратора низкотемпературного и др.), скомпонованных в технологические линии, объединенных цеховыми коллекторами и связанных единым технологическим процессом, рис.2.

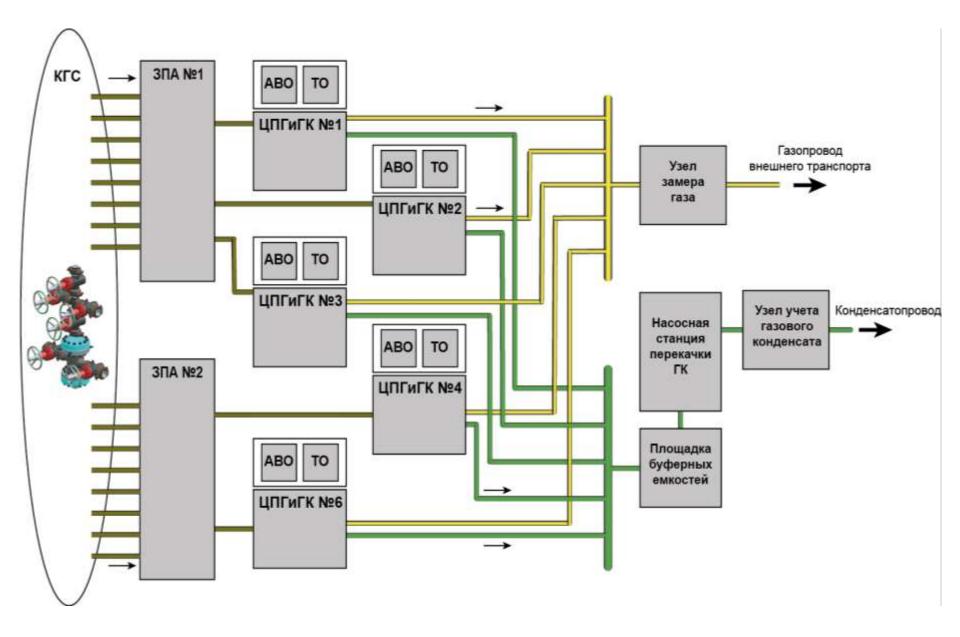


Рис.1. Укрупненная технологическая схема с элементами промыслового уровня безопасности

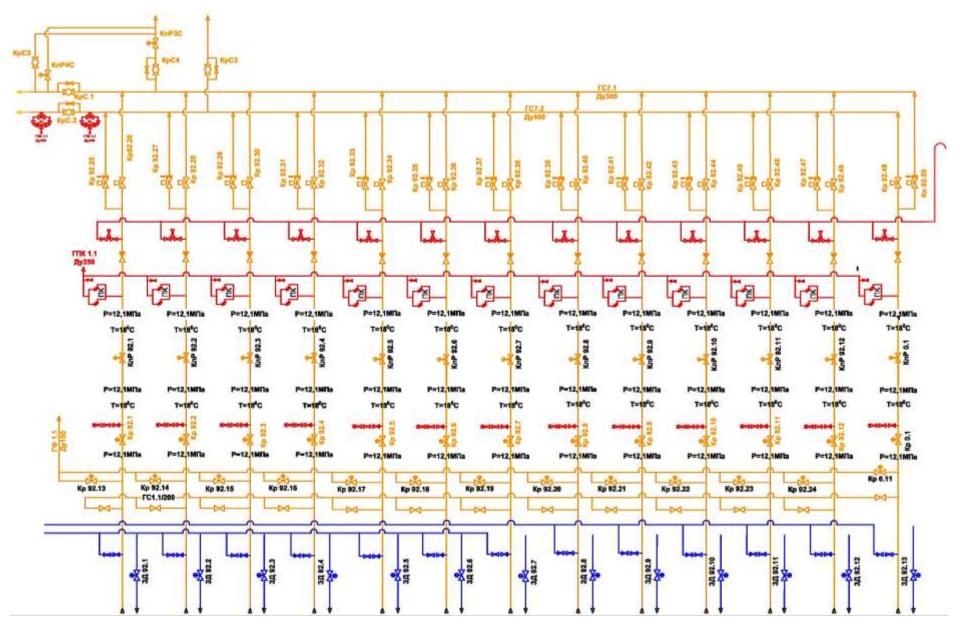


Рис.2. Технологическая схема цеха ЗПА с элементами цехового уровня безопасности

Агрегатный уровень ГКП — это конкретный технологический блок, взаимодействующий с другими блоками посредством технологических линий, с заданными характеристиками и режимами работы.

Уровни безопасности ГКП выбираются адекватными поставленной задаче обеспечения комплексной безопасности и защищенности ГКП и его иерархической структуре.

Элементами промыслового уровня безопасности ГКП могут быть не только буквально его цеха, но и их эквиваленты — площадки теплообменников и ABO, буферных емкостей, подогревателей газового конденсата, узел замера газа, узел учета газового конденсата и др. Кусты газовых скважин с газосборной сетью представляют «большой территориально распределенный цех», функционально также являющийся эквивалентом элемента промыслового уровня.

Элементами цехового уровня безопасности ГКП (каждого конкретного цеха) являются технологические линии с набором технологических блоков, и их эквиваленты, входящие в состав цехов. Отдельные кусты газовых скважин с выходными коллекторами также являются эквивалентами цехового уровня.

Элементами агрегатного уровня безопасности являются отдельные единицы оборудования и их эквиваленты, к которым также относятся отдельные скважины с модульными обвязками.

Механизмом порождения взаимодействий между элементами каждого из уровней являются трубопроводы (арматурные узлы отдельных технологических блоков, трубопроводные обвязки цехов, внутриплощадочные трубопроводы между цехами).

Постановка целей решения задачи

Создание системы комплексной безопасности и защищенности ГКП, охватывающей средствами безопасности его цеховой и промысловый уровни (агрегатный уровень сейчас не рассматривается) и способной выполнять следующие функции:

- сбор, преобразование, регистрацию, обработку значений параметров, используемых для определения характеристик взаимодействия элементов уровней;
- определение текущих характеристик взаимодействия элементов уровней, отражающих процессы воздействия элементов друг на друга и их взаимную обусловленность;
- определение критического режима работы ГКП, ближайшего к его текущему рабочему режиму работы;
- формирование в текущем времени ранних признаков развития на ГКП опасных ситуаций;
- контроль в текущем времени соответствия или нарушения установленных допусков для признаков развития на ГКП опасных ситуаций;
- анализ результатов целевых обработок параметров ГКП и принятие на их основе решений о координированном управлении работой цехов и промысла в целом с целью недопущения сближения текущего режима ГКП, с ближайшим к нему критическим режимом, с последующим представлением принятых решений начальнику смены через SCADA.

Объекты решения задачи

Характеристики взаимодействия между элементами в каждом уровне безопасности ГКП, информативные в отношении нарушения нормальных причинно-следственных связей, приводящих к развитию опасных ситуаций.

Критерии структурной неустойчивости по каждому из уровней ГКП.

Критические режимы работы ГКП.

Анализ и интерпретация результатов обработок параметров ГКП в каждом из уровней безопасности.

Принятие обоснованных решений о продолжении эксплуатации ГКП или парировании развития на нем опасной ситуации.

Сквозная цепочка решения задачи комплексной безопасности и защищенности ГКП (попытка привязки этапности решения задачи к специфике и проблематике реальной СТС)

- 1. Учет требований комплексной безопасности и защищенности на стадии проектирования вновь строящихся и развивающихся СТС.
- 2. Разработка и изготовление инструментария (переносного испытательного комплекса), предназначенного для проведения промысловых исследований по направлениям, указанным в п. 7, и ориентированного на решение задачи комплексной безопасности и защищенности СТС.
- 3. Целевое обследование каждого конкретного объекта в условиях штатной эксплуатации.
- 4. Обоснованный выбор уровней безопасности СТС.
- 5. Описание каждого из уровней безопасности и составляющих его элементов.
- 6. Постановка задачи комплексной безопасности и защищенности для каждого уровня безопасности СТС.
- 7. Проведение промысловых исследований с использованием переносного испытательного комплекса по следующим основным направлениям:
 - доказательный выбор полной группы режимных параметров для каждого уровня безопасности СТС;
 - доказательный выбор конфигураций систем измерений (номенклатуры датчиков и мест их установки) для каждого уровня безопасности (с учетом информативности характеристик взаимодействия элементов СТС в задачах комплексной безопасности и защищенности);

- доказательный выбор группы ранних признаков развития опасных ситуаций на СТС;
- доказательное формирование критериев защиты СТС от опасных ситуаций;
- реализация качества объектной ориентируемости системы комплексной безопасности и защищенности к каждому конкретному СТС;
- отработка процедур начальной адаптации системы комплексной безопасности и защищенности к каждому конкретному объекту;
- отработка процедур паспортизации объекта по критериям комплексной безопасности и защищенности.
- 8. Разработка и согласование процедур распараллеливания измерительных каналов АСУТП с целью использования в алгоритмах решения задачи комплексной безопасности и защищенности.
- 9. Проектирование системы комплексной безопасности и защищенности объекта. Разработка ее объектно-ориентируемых математического и программного обеспечений.
- 10. Изготовление, стендовые испытания, сертификация, поставка на объект.
- 11. Опытная эксплуатация. Реализация качества системы.
- 12. Ввод системы в эксплуатацию.
- 13. Паспортизация объекта по критериям защиты от системных аварий.

Спасибо за внимание